
Baksheesh
Mohit Thakre, Nishchay Rajput and Prajapati Harsh Pareshkumar

Indian Institute of Technology, Bhilai

Abstract.
Our paper presents the BAKSHEESH, which is a lightweight block cipher designed
over the GIFT-128. It focuses over the efficiency without compromising security
against classical cryptanalytic methods from the GIFT-128. It has comparatively less
rounds i.e. 35 as compared to the GIFT-128(40 rounds). It is smaller in design with
comparable resistance to differential and linear attacks. It has unique 4-bit S-box
with a single not-trivial Linear Structure(LS), which balances the simplicity and
security. Design for this cipher has improved hardware efficiency and includes the less
number of gate and better resistance to side-channel attacks. In the implementation
of BAKSHEESH, it uses the full-round key XOR compared to the half-round key
XOR in GIFT-128. BAKSHEESH sets a new standard for lightweight cipher design,
offering a viable alternative to its predecessors.

Contents
1 Introduction 2

2 Construction 2
2.1 SubCells (S-Box) . 3
2.2 PermBits (Bit Permutations as Linear Layer) 4
2.3 AddConstants (Round Constants XOR Layer) 5
2.4 Key Schedule Routine and AddRoundKey Layer 5

3 Differential and Linear Analysis 6
3.1 DDT analysis . 6
3.2 Differential Branch Number/weight . 7
3.3 Linear Approximation Table . 7
3.4 Comparative Analysis . 8
3.5 Practical Implication . 8

4 Cryptanalysis 8
4.1 Differential Cryptanalysis . 8
4.2 A 19-round Differential Key-recovery Attack 9
4.3 Integral Cryptanalysis on Round-reduced BAKSHEESH 10
4.4 Attacks for Key-recovery . 14

5 Automated Cryptanalysis 16
5.1 Constraints for S-Box to be Active . 16
5.2 How to Integrate S-Box into Linear Constraints? 16

6 Github 18

2 Baksheesh

1 Introduction

The rapid proliferation of Internet of Things (IoT) devices has underscored the importance
of lightweight cryptography, where constrained hardware environments demand highly
efficient and secure encryption mechanisms. Lightweight cryptographic solutions aim to
minimize computational and hardware costs while maintaining robust security against
classical cryptanalytic techniques. This field has gained significant traction, as evidenced
by recent cipher designs like GIFT and PYJAMASK-128, alongside global competitions
such as CAESAR and NIST’s Lightweight Cryptography Initiative. Building upon this
trend, the BAKSHEESH cipher emerges as a successor to the widely acclaimed lightweight
cipher, GIFT-128. While GIFT-128 set benchmarks in terms of efficiency and security,
advancements in cryptographic research over the past few years have paved the way for
even greater optimization. BAKSHEESH takes this evolution further by introducing a
novel 4-bit S-Box with a non-trivial Linear Structure (LS), an innovation that enables
a delicate balance between simplicity, efficiency, and security. The BAKSHEESH cipher
retains the core design philosophy of GIFT-128, incorporating the same bit-permutation
layer to ensure backward compatibility and ease of implementation. However, it achieves a
12.5% reduction in rounds, with 35 rounds compared to GIFT-128’s 40, leading to a smaller
overall design. The S-Box in BAKSHEESH boasts key properties such as a Linear Branch
Number (LBN) of 3 (the theoretical upper bound for 4×4 S-Boxes), an algebraic degree of
2, and a low gate count of only 3 AND operations. These properties make BAKSHEESH
exceptionally efficient for both hardware and software implementations, while maintaining
resistance to classical attacks like differential and linear cryptanalysis. This paper explores
the BAKSHEESH cipher in detail, examining its design, security, and performance. Key
contributions include the analysis of its S-Box properties, implementation efficiency, and
cryptanalytic resistance. The goal is to demonstrate how unconventional design choices,
such as the use of a non-trivial LS S-Box, can lead to significant advancements in lightweight
cryptographic designs.

2 Construction

Figure 1: Baksheesh Construction

Mohit Thakre, Nishchay Rajput and Prajapati Harsh Pareshkumar 3

2.1 SubCells (S-Box)

Table 1: S-Box for BAKSHEESH

Input 0 1 2 3 4 5 6 7 8 9 a b c d e f
Output 3 0 6 d b 5 8 e c f 9 2 4 a 7 1

The S-Box take an 4-bit input and correspondingly gives and 4-bit output as shown in
Table 1. The SBox used in Baksheesh is S = 306DB58ECF924A71. This SBox exhibits
several desirable cryptographic properties. It has a single non-zero linear structure (LS) at
position 8, a linear branch number (LBN) of 3, and a differential branch number (DBN)
of 2. Table 2 compares the cryptographic properties of lightweight SBoxes, where ‘AD‘
denotes algebraic degree and ‘Nl‘ refers to non-linearity.

Table 2: Cryptographic properties of few lightweight cipher

DBN LBN DU AD (max) AD (min)
Baksheesh 306DB58ECF924A71 2 3 16 2 2
PRESENT C56B90AD3EF84712 3 2 4 3 2
SKINNY-64 C6901A2B385D4E7F 2 2 4 3 2

GIFT 1A4C6F392DB7508E 2 2 6 3 2
PYJAMASK-128 2D397BA6E0F4851C 2 2 4 3 2

PRINCE BF32AC916780E5D4 2 2 4 3 3
KLEIN 74A91FB0C3268ED5 2 2 4 3 3
LED C56B90AD3EF84712 3 2 4 3 2

PUFFIN D7329AC1F45E60B8 2 2 4 3 3
PRINT(3-bit s-box) 01367452 2 2 2 2 2

Rectangle 65CA1E79B03D8F42 2 2 4 3 2
SQUARE AES-SBox 2 2 4 7 -

MIDORI 1053E2F7DA9BC846 2 2 4 3 2
1053E2F7DA9BC846 3 2 4 3 2

;
The coordinate functions of the Baksheesh SBox, represented in their algebraic normal

form (ANF), are given as:

y0 = x0x2 ⊕ x0 ⊕ x1 ⊕ x3 ⊕ 1,

y1 = x0 ⊕ x1x2 ⊕ x3 ⊕ 1,

y2 = x0x2 ⊕ x1x2 ⊕ x1 ⊕ x3,

y3 = x0x1 ⊕ x0x2 ⊕ x2 ⊕ x3.

Implementation Costs The Baksheesh SBox is lightweight, as demonstrated by its
ASIC benchmarks shown in Table 3. The benchmarks, obtained using a look-up-based
implementation approach, show that this SBox is more cost-efficient than most recent 4× 4
SBoxes. However, it is slightly less efficient than the SKINNY-64 SBox when implemented
using the Faraday 65nm library.

4 Baksheesh

Table 3: AISC Benchmark for lightweight S-Box

Cost (Gate Equivalent)
UMC 65nm Faraday 65nm STM 130nm

GIFT 1A4C6F392DB7508E 28 22 21
PYJAMASK-128 2D397BA6E0F4851C 28 26 22

SKINNY-64 C6901A2B385D4E7F 21 16 21
Baksheesh 306DB58ECF924A71 21 19 21

Branch Number Properties The linear branch number (LBN) of the Baksheesh SBox
is 3, which is the theoretical upper limit for any 4× 4 SBox. Any 4× 4 SBox with LBN
3 must have at least one non-zero LS. While the Baksheesh SBox achieves this optimal
LBN with a minimal LS count, our search for SBoxes with a differential branch number
(DBN) of 3 showed that such SBoxes typically have at least three non-zero LS values. For
example, the SBox S = 126CDE39F58BA047 has DBN 3 but includes three non-zero LS
values.

SBoxes with multiple non-zero LS values tend to slow down the propagation of dif-
ferential and linear trails, which may necessitate more encryption rounds for adequate
security. In contrast, the Baksheesh SBox, with its 1LS/3LBN/2DBN, strikes a balance
between efficient implementation and cryptographic strength. This balance helps to reduce
the number of rounds while keeping the AND gate count low, contributing to the overall
efficiency of the cipher.

2.2 PermBits (Bit Permutations as Linear Layer)

Figure 2: Permutation Layer

Here we can see in Figure 2 that we have two permutation layer i.e Permutation Layer
1 and Permutation Layer 2 which each has relation corresponding with the input bit to
the output bit.

Permutation 1 : ithbit← (3− (i mod 4)) + (4 ∗
⌊

i

4

⌋
) where, i ∈ {0, 1, 2...127}.

Permutation 2 : ithbit← ((i mod 4) + (
⌊

i

16

⌋
x 4)) + 32 * ((i - ((

⌊
i

4

⌋
) mod 4)) mod 4) where, i ∈ {0, 1, 2...127}.

Mohit Thakre, Nishchay Rajput and Prajapati Harsh Pareshkumar 5

Table 4: Permutation-2 P128 Mapping

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P 128(i) 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P 128(i) 4 37 70 103 100 5 38 71 68 101 6 39 36 69 102 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P 128(i) 8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P 128(i) 12 45 78 111 108 13 46 79 76 109 14 47 44 77 110 15

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
P 128(i) 16 49 82 115 112 17 50 83 80 113 18 51 48 81 114 19

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
P 128(i) 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
P 128(i) 24 57 90 123 120 25 58 91 88 121 26 59 56 89 122 27

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
P 128(i) 28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31

Permutation layer operates over the 128-bit state. It is a bit permutation which
shuffles the bit position as defined in Table 2.

bP128(i) ← bi, ∀i ∈ {0, 1, . . . , 127},

2.3 AddConstants (Round Constants XOR Layer)

Table 5: Round Constants at Tap Positions

Round Tap 8 Tap 13 Tap 19 Tap 35 Tap 67 Tap 106
1 2 33 16 9 36 19
2 40 53 26 13 38 51
3 56 61 62 31 14 7
4 34 49 24 45 54 59
5 28 47 22 43 20 11
6 4 3 32 17 8 –

Note: The bit at the last tap position (106) toggles in each round.
In the AddConstant layer the certain bits of the internal state are XORed at

specific position also known as tap position which are defined in Table 3. These
position are fixed and chosen such that it provides the maximum diffusion across the
rounds. Not all bits are XORed as to reduce the computational complexity and to ensure
that the cipher is lightweight.

2.4 Key Schedule Routine and AddRoundKey Layer
The initial key schedule of BAKSHEESH was designed to be simple, where the master key
is directly XORed with the state, to minimize implementation overhead. However, this
approach was found vulnerable to an invariant subspace attack, primarily due to the

6 Baksheesh

sparse round constants, as only 6 fixed-bit positions were modified during the constant
addition operation. To counter this weakness, the key schedule was adjusted to include a
1-bit right rotation for each round, represented as:

kj+1 ← kj ≫ 1.

Following this modification, extensive analysis revealed no signs of invariant subspace
attacks. Additionally, the full 128-bit key is XORed with the state, replacing the half-key
XOR used in GIFT-128. While this adjustment increases the cost, it provides a more
robust and secure design.

3 Differential and Linear Analysis
An S-box (Substitution box) is a fundamental nonlinear component in block ciphers,
providing confusion in the encryption process. The effectiveness of an S-box is measured
by analyzing its resistance to cryptanalysis techniques such as Differential Cryptanalysis
and Linear Cryptanalysis. Results of the analysis of S-Box from the DDT and LAT are
explained below.

3.1 DDT analysis
The Difference Distribution Table (DDT) quantifies how input differences (∆X) map to
output differences (∆Y) under the S-box transformation. It is crucial for the assessment
of resistance to Differential Cryptanalysis.

Figure 3: Difference Distribution Table

The table shows:

• Row indices correspond to all possible input differences (0-16 for 4-bit S-Box).

• Column indices correspond to all possible output differences (0-16 for 4-bit S-Box).

• Each entry represents the number of input-output pairs that satisfy the equation:

S(X)⊕ S(X ⊕∆X) = ∆Y

Mohit Thakre, Nishchay Rajput and Prajapati Harsh Pareshkumar 7

• For this S-box, the following key observations are made:

• Differential Uniformity: The highest non-zero entry in the DDT is 16, meaning that
for some input differences (∆X except 0), every output difference (∆Y except 0) is
equally likely. This indicates that the S-box has 16-uniformity, which is significantly
higher than the ideal differential uniformity of 2 seen in robust S-boxes like AES. A
differential uniformity of 16 is weak and makes the cipher vulnerable to Differential
Cryptanalysis.

3.2 Differential Branch Number/weight
The branch number is another key property that measures the diffusion capability of the
S-box. It is calculated as:

where the Hamming weight is the number of non-zero bits in x and S(x). For this
S-box:

• Branch Number: 2.

• This is a relatively low value, indicating limited diffusion. A higher branch number
(closer to the size of the S-box, i.e., 4) is desirable for strong mixing of input and
output bits.

• In Baksheesh Cipher, S-BOX is chosen considering the good balance in cost for
implementation and number of rounds as 1LS/3LBN/2DBN rather than choosing an
S-BOX with higher DBN.

3.3 Linear Approximation Table
The Linear Approximation Table (LAT) measures correlations between linear combinations
of input and output bits. Each entry is calculated as:

Figure 4: Linear Approximation Table

where a and b are the input and output masks, respectively. The LAT provides insights
into the S-box’s resistance to Linear Cryptanalysis. Key observations from the LAT:

8 Baksheesh

• The maximum absolute value in the LAT is 8 (bias), indicating the strongest
correlation between linear combinations of input and output bits. This value indicates
that for input mask 8 and output mask 7, you will definitely be able to find one bit
of the key from the linear cryptanalysis.

• High correlation values suggest that the S-box is susceptible to Linear Cryptanal-
ysis, as attackers can exploit these correlations to predict output values with greater
probability.

3.4 Comparative Analysis
The following table compares the properties of this S-box with S-boxes from other well-
known ciphers:

Table 6: Comparative Analysis

Cipher Differential
Uniformity

Branch
Number

Maximum Linear
Bits

Size
(in bits)

Resistance to
Attacks

Baksheesh 16 2 8 4x4
Weak resistance to
differential and
linear attacks.

AES 2 5 4 8x8 Strong resistance to
cryptanalysis.

PRESENT 4 3 6 4x4 Good balance for
lightweight security.

3.5 Practical Implication
The cryptographic properties of this S-box indicate the following:

• Weak Resistance to Differential Cryptanalysis: The high differential uniformity
(16) implies that differential attacks are feasible, as attackers can predict output
differences for given input differences with high certainty.

• Limited Diffusion: The low branch number (2) suggests that changes in input bits
are not well-diffused into the output, reducing the effectiveness of confusion and
diffusion layers in the cipher.

• Moderate Linear Correlation: The LAT shows significant correlations (8), making
the S-box moderately susceptible to linear cryptanalysis. Attackers can exploit these
correlations to predict key bits more efficiently.

4 Cryptanalysis
4.1 Differential Cryptanalysis
For the differential cryptanalysis, SAT models are used to find the optimal trails. MILP-
based autmoation approach could not reach the number of round as high as the SAT. So
we will be see the analysis based on SAT model.

4.1.1 Finding Differential Trails

In SAT model, we use CNF language to describe the constraints. Since DDT values are
even(i.e. 4 and 16), so only one variable needed to represent it.

p = 1 for DDT [i][j] = 4

Mohit Thakre, Nishchay Rajput and Prajapati Harsh Pareshkumar 9

p = 0 for DDT [i][j] = 16

It would take 4 varibles for the input bits, 4 varibles for the output bit and 1 for the
probability for an S-Box. Each S-Box has 27 CNF clauses.

Table 7: Optimal differential bounds for BAKSHEESH (single trail), where p denotes the
probability.

Round 1 2 3 4 5 6 7 8 9 10 11
− log2 p 0 2 4 8 14 20 30 40 48 54 60
Round 12 13 14 15 16 17 18 19 20 21 22
− log2 p 68 76 84 92 100 110 120 126 132 140 148

For round 1, −log(p) = 0 means trail has probability of 20 = 1(100%).As the number
of rounds increases the, the probability of differential trail decreases, which indicates the
differential cryptanalysis become harder for more rounds(due to avalanche effect, diffusion
and non-linear transformation).

4.2 A 19-round Differential Key-recovery Attack
Considering the 18-round differential trail with a probability of 2−120, as illustrated in
Table 7, we present a key-recovery attack on the 19-round BAKSHEESH cipher by
extending the distinguisher with one additional round. The input difference for this
distinguisher is:

(0x0d00940040a00000, 0x0000000000000000),

and the output difference is:

(0x8800890044004c00, 0x2200260011001300).

The specific steps for key-recovery are as follows:

1. Choose 2121 pairs of plaintexts with differences equal to the input differences of the
19-round differential trail.

2. Filter out incorrect pairs using the inactive bits of the ciphertexts; there are 257
pairs remaining.

3. Initialize a list of 264 empty counters to guess 64 bits of the subkey RK19.

4. For all 257 pairs, perform a guess-and-filter procedure to identify candidate keys and
update the corresponding counters.

The subkey with the maximum counter is selected as the correct subkey. The complex-
ities of this process are:

• Data Complexity: 2122

• Memory Complexity: 264

• Time Complexity: 2121

To recover the remaining 64 bits of the 128-bit master key, a brute-force search with a
time complexity of 264 is performed. Thus, the total time complexity to recover the full
128-bit key is 2121.

10 Baksheesh

4.3 Integral Cryptanalysis on Round-reduced BAKSHEESH

In this section, we will first give an overview of our framework for mounting an (r+2)-round
key-recovery attack using a given r-round integral distinguisher. Then we finally used it
and find 7- and 8-round distinguishers to achieve 9- and 10-round practical attacks, and a
13-round distinguisher to do a theoretical 15-round key-recovery attack.

Main Idea: Equivalent Integral Property

4.3.1 Steps to do the Attack:

1. Query: For the input plaintext X0, the output at the round r + 2 is Xr+3.

Figure 5: Flow of Integral Cryptoanalysis

2. Guess: Guess has to be made in the round key bit of round r + 2 (RKr+2). Firstly,
the plaintexts for query are chosen as equal to 2d. ‘d’ denotes the number of active
bits found.

Mohit Thakre, Nishchay Rajput and Prajapati Harsh Pareshkumar 11

Table 8: The corresponding bit positions of RKr+2 that need to be guessed for detecting
the integral property of Xr+1 at the bit position 4i + 3 (0 ≤ i ≤ 31).

Xr+1 Guessed key RKr+2 Set Constant Set
3 0, 33, 66, 99, 8, 41, 74, 107, 16, 49, 82, 115 K0 K ′

0
7 24, 57, 90, 123, 0, 33, 66, 99, 8, 41, 74, 107 K1
11 16, 49, 82, 115, 24, 57, 90, 123, 0, 33, 66, 99 K2 K ′

0
15 8, 41, 74, 107, 16, 49, 82, 115, 24, 57, 90, 123 K3
19 96, 1, 34, 67, 104, 9, 42, 75, 112, 17, 50, 83 K4 K ′

1
23 120, 25, 58, 91, 96, 1, 34, 67, 104, 9, 42, 75 K5
27 112, 17, 50, 83, 120, 25, 58, 91, 96, 1, 34, 67 K6 K ′

1
31 104, 9, 42, 75, 112, 17, 50, 83, 120, 25, 58, 91 K7
35 64, 97, 2, 35, 72, 105, 10, 43, 80, 113, 18, 51 K8 K ′

2
39 88, 121, 26, 59, 64, 97, 2, 35, 72, 105, 10, 43 K9
43 80, 113, 18, 51, 88, 121, 26, 59, 64, 97, 2, 35 K10 K ′

2
47 72, 105, 10, 43, 80, 113, 18, 51, 88, 121, 26, 59 K11
51 32, 65, 98, 3, 40, 73, 106, 11, 48, 81, 114, 19 K12 K ′

3
55 56, 89, 122, 27, 32, 65, 98, 3, 40, 73, 106, 11 K13
59 48, 81, 114, 19, 56, 89, 122, 27, 32, 65, 98, 3 K14 K ′

3
63 40, 73, 106, 11, 48, 81, 114, 19, 56, 89, 122, 27 K15
67 120, 25, 58, 91, 128, 33, 66, 99, 136, 41, 74, 107 K16 K ′

4
71 24, 57, 90, 123, 0, 33, 66, 99, 8, 41, 74, 107 K17
75 16, 49, 82, 115, 24, 57, 90, 123, 0, 33, 66, 99 K18 K ′

4
79 8, 41, 74, 107, 16, 49, 82, 115, 24, 57, 90, 123 K19
83 96, 1, 34, 67, 104, 9, 42, 75, 112, 17, 50, 83 K20 K ′

5
87 120, 25, 58, 91, 96, 1, 34, 67, 104, 9, 42, 75 K21
91 112, 17, 50, 83, 120, 25, 58, 91, 96, 1, 34, 67 K22 K ′

5
95 104, 9, 42, 75, 112, 17, 50, 83, 120, 25, 58, 91 K23
99 64, 97, 2, 35, 72, 105, 10, 43, 80, 113, 18, 51 K24 K ′

6
103 88, 121, 26, 59, 64, 97, 2, 35, 72, 105, 10, 43 K25
107 80, 113, 18, 51, 88, 121, 26, 59, 64, 97, 2, 35 K26 K ′

6
111 72, 105, 10, 43, 80, 113, 18, 51, 88, 121, 26, 59 K27
115 32, 65, 98, 3, 40, 73, 106, 11, 48, 81, 114, 19 K28 K ′

7
119 56, 89, 122, 27, 32, 65, 98, 3, 40, 73, 106, 11 K29
123 48, 81, 114, 19, 56, 89, 122, 27, 32, 65, 98, 3 K30 K ′

7
127 40, 73, 106, 11, 48, 81, 114, 19, 56, 89, 122, 27 K31

Active bits: The bits in X0 are those which are together as a group varied with 2d

values and other remaining bits are known as the unknown bits, which are kept
constant.

3) Approach of selecting active bits: For selecting ‘d’ active bits, consecu-
tive ‘d’ bits are chosen and tested to see if they give maximum number of balanced
bits. For this ‘d’ active bits are chosen and provided with 2d different values. The
calculated results are as follows:

Table 9: The Active bits found by the given approach.

Dist. Active bits Number
ID7 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 14
ID8 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31
30

12 Baksheesh

IDr: Distinguisher till r-rounds.

For ID7, d = 14
For ID8, d = 30

4) Filtering (Final Step): As we know,⊕
X0∈D

xr
4i+3 =

⊕
X0∈D

(
xr+1

P (4i) ⊕ xr+1
P (4i+1) ⊕ xr+1

P (4i+2)

)
For the value of Xr+2,

If R.H.S = 0, then xr
4i+3 = 0 ⇒ Select the Key bits guess.

If R.H.S ̸= 0, then xr
4i+3 ̸= 0 ⇒ Eliminate the Key bits guess.

5) Repeat Filtering for 3 times and then an exhaustive search:

Repeat step 4th 3 times with different 2d plaintexts, and thus for all 0 ≤ s ≤ 7, there
are in total 216 guessed Key bits and every 3 times 24 Keys are eliminated (assuming
b0 = 4 of the sth group).

Thus we are left with 24 key guesses, those are checked with exhaus-
tive key search.

Proof of the Attack :

Proposition : ⊕
X0∈D

xr
4i+3 =

⊕
X0∈D

(
xr+1

P (4i) ⊕ xr+1
P (4i+1) ⊕ xr+1

P (4i+2)

)

Proof :

We know that,
xr

4i+3 = yr
4i+2 ⊕ yr

4i+1 ⊕ yr
4i (1)

‘i’ denotes the i-th S-box (S). The equation (1) is followed by the following property
1 of the S-box in BAKSHEESH Cipher.

Property 1 :

For BAKSHEESH’s Sbox, there is a linear trail 1000 → 0111 with correlation 1.

Property 2 :

For the inverse of BAKSHEESH’s Sbox, there is a differential transition 1111 →
1000 with probability 1.

xr+1
P (j) = yr

j ⊕ rkr+1
P (j) ⊕ rcr

P (j), 0 ≤ j ≤ 127,

Mohit Thakre, Nishchay Rajput and Prajapati Harsh Pareshkumar 13

where rcr
P (j) = cr

P (j) if P (j) ∈ {8, 13, 19, 35, 64, 106}, otherwise rcr
P (j) = 0. Therefore,

the bit xr
4i+3 can be represented as

xr
4i+3 = xr+1

P (4i) ⊕ xr+1
P (4i+1) ⊕ xr+1

P (4i+2) ⊕ ckr
i , (1)

where ckr
i = rkr+1

P (4i) ⊕ rkr+1
P (4i+1) ⊕ rkr+1

P (4i+2) ⊕ rcr+1
P (4i) ⊕ rcr+1

P (4i+1) ⊕ rcr+1
P (4i+2). Note

that ckr
i is a constant determined by the subkey and round constant, since we have

2d plaintexts, of (r + 1)-th round, which gives that

ckr
i = 0. (2)

Thus, we have

xr
4i+3 = (xr+1

P (4i) ⊕ xr+1
P (4i+1) ⊕ xr+1

P (4i+2) ⊕ ckr
i) = (xr+1

P (4i) ⊕ xr+1
P (4i+1) ⊕ xr+1

P (4i+2)). (3)

Exploring related key bits (Introduction of K ′
s). For a given r-round dis-

tinguisher, let’s assume that the position of bit 4i + 3 (0 ≤ i ≤ 31), i.e., xr+1
4i+3,

exhibits the balanced integral property. We can filter the guessed values of partial
bits of the subkey RKr+2 associated with xr+1

4i+3 by checking the balanced property
of xr+2

P (4i) ⊕ xr+2
P (4i+1) ⊕ xr+2

P (4i+2), whose value can be determined using the known
(r + 2)-th round output, i.e., Xr+3, and the guessed key bit rkr+2.
Specifically, for the instance of xr+2

P (4i+j) (j ∈ {0, 1, 2}), we first need to calculate the
4 bits (yr+2

4ℓj+3, yr+2
4ℓj+2, yr+2

4ℓj+1, yr+2
4ℓj

) as follows:

yr+2
4ℓj+m = xr+3

P (4ℓj+m) ⊕ rkr+2
P (4ℓj+m), 0 ≤ m ≤ 3 (4)

according to the round function, where ℓj =
⌊

P (4i+j)
4

⌋
and rkr+2

P (4ℓj+m) is a guessed
key bit. By inverting the S-box Sei

ℓj
, the value of xr+2

P (4i+j) is obtained. Consequently,
there are a total of 12 key bits that need to be guessed to detect the balanced property
of xr+1

4i+3. We list the key bits of RKr+2 corresponding to each xr+1
4i+3 (0 ≤ i ≤ 31) in

Table 7. Denote Ki (0 ≤ i ≤ 31) as the set containing the bit positions of RKr+2

corresponding to xr+1
4i+3, we observe the following from Table 7.

Observation 1. The union of any b (b ≥ 2) sets among the s-th (0 ≤ s ≤ 7) set
tuple (K4s, K4s+1, K4s+2, K4s+3) is a constant set denoted by Kb

s that contains 16
bit positions.

The data is with the reference to Table 7.

For example, regarding (K0, K1, K2, K3), we have

K ′
0 = K0 ∪K1 = K0 ∪K2 = K0 ∪K3 = K1 ∪K2 = K1 ∪K3 = K2 ∪K3

= K0 ∪K1 ∪K2 = K0 ∪K1 ∪K3 = K1 ∪K2 ∪K3

= K0 ∪K1 ∪K2 ∪K3

= {0, 33, 66, 99, 8, 41, 74, 107, 16, 49, 82, 115, 24, 57, 90, 123}.

Thus, if there are b0 (b0 ≥ 2) balanced bits among (xr+1
3 , xr+1

7 , xr+1
11 , xr+1

15), we can
use these balanced bits to filter the guessed key bits, whose positions are within
K ′

0. Specifically, the filtering strength is 2−b0 , meaning a wrongly guessed key can

14 Baksheesh

pass one filtering with a probability of 2−b0 . Here, we define detecting the balanced
property for all remaining guessed-key candidates as one filtering.
For instance, assuming all 4 bits of (xr+1

3 , xr+1
7 , xr+1

11 , xr+1
15) are balanced. Initially,

there are 216 guessed values for the 16 bits of subkey RKr+2 as shown in K ′
0. For

each guessed value, we decrypt 2d Xr+3 generated by the chosen X0 to obtain
the information of (xr+1

3 , xr+1
7 , xr+1

11 , xr+1
15), and compute the XOR sum for these

4 bits. If the XOR sum for the 4 bits is all 0s, we retain this guessed value as a
candidate; otherwise, we discard it. After 216 instances (termed one filtering), there
are theoretically 212 remaining candidates. Repeating this process once more, i.e.,
filtering a second time, results in 28 candidates remaining.
Filtering Analysis: For an r-round distinguisher, let bs denote the number of
balanced bits within the s-th bit group (xr+1

16s+3, xr+1
16s+7, xr+1

16s+11, xr+1
16s+15) where 0 ≤

s ≤ 7. Let Cs represent the set containing the candidates of the 16 key bits whose
positions are in K ′

s for 0 ≤ s ≤ 7. Initially, Cs comprises 216 candidates before any
filtering occurs. In theory, after ts rounds of filtering Cs, 216−ts·bs candidates will
remain in Cs. Specifically, when ts · bs ≥ 16, the correct value can be identified.
However, this theoretical prediction may not align with real-world outcomes, as
highlighted in the following observation.
Observation 2: For each 0 ≤ s ≤ 7, there are always 24 surviving candidates
(including the correct value) in Cs, no matter how many times we filter them. In
order to illustrate this observation more intuitively, we use the case of s = 0 as an
example. The related bits of state and subkey for detecting the integral property
of (xr+1

15 , xr+1
11 , xr+1

7 , xr+1
3) are simply depicted in Figure 2. Coincidentally, the 12

related bits of Xr+2 are distributed as the 3 LSBs of 4 Sboxes. Assuming all bits
of (xr+1

15 , xr+1
11 , xr+1

7 , xr+1
3) are balanced, then the filtering strength is 2−4 and 24

candidates will survive in C0 after 3 filterings. Let us focus on S0. From Property 2,
we know that the value of (xr+2

2 , xr+2
1 , xr+2

0) will not be changed if we simultaneously
turn over the 4 bits (yr+2

3 , yr+2
2 , yr+2

1 , yr+2
0). Note that

yr+2
3 = rkr+3

99 ⊕ xr+3
99 ,

yr+2
2 = rkr+2

66 ⊕ xr+2
66 ,

yr+2
1 = rkr+3

33 ⊕ xr+3
33 ,

yr+2
0 = rkr+2

0 ⊕ xr+3
0 .

In other words, if the correct values of (rkr+2
99 , rkr+2

66 , rkr+2
33 , rkr+2

0) are (v3, v2, v1, v0),
then the guessed values (v3 ⊕ 1, v2 ⊕ 1, v1 ⊕ 1, v0 ⊕ 1) will always pass the filtering
process. Essentially, there are two 4-bit key values that can pass the filtering for
each of the 4 S-boxes: one being the correct value and the other being its negation.
Thus, there are a total of 24 candidates that will remain in C0.
Observation 2 tells us that we can recover at most 96 bits of information of the
128-bit subkey using integral distinguishers. Then, the remaining 32-bit information
can be determined by exhaustive searching.

4.4 Attacks for Key-recovery

In this sectionn, we will utilize the made distinguishers(ID7 and ID8) to do two practi-
cal and a theoretical key-recovery attacks based on the framework of baksheesh cipher.
Firstly, defining some notations. For an r-round distinguisher, we denote bs the
number of balanced bits among the s-th bit group (xr+1

16s+3, xr+1
16s+7, xr+1

16s+11, xr+1
16s+15)

Mohit Thakre, Nishchay Rajput and Prajapati Harsh Pareshkumar 15

where 0 ≤ s ≤ 7. We denote Cs the set that contains the candidates of the 16 key
bits whose positions are in K′

s for 0 ≤ s ≤ 7. At the beginning, Cs has in total 216

candidates.

A practical 9-round attack (Utilizing a 7-round distinguisher). This attack employs
the 7-round integral distinguisher ID7 as illustrated in Table 8. Specifically, we have
r = 7, d = 14, and bs = 4 for all 0 ≤ s ≤ 7. To ensure that only 24 candidates
remain in each Cs, we need to filter each Cs three times. Note that for a fixed s, each
filtering of Cs requires 214 different chosen plaintexts, but for different s, the same
chosen plaintexts can be reused. Consequently, the data complexity of this attack is
3× 214 ≈ 215.585.

Regarding the time complexity, we must first evaluate the cost of one filtering
round, which involves two parts: partial decryptions and XOR sum computations.
In this attack, we consider a 9-round BAKSHEESH as a unit of time. For each
s ∈ {0, 1, · · · , 7}, it takes 16+2×4 = 24 bitwise XORs and 4 lookup-table operations
(for the 4-bit inverse SBox) to obtain the information for the s-th 4-bit group
(xr+1

16s+3, xr+1
16s+7, xr+1

16s+11, xr+1
16s+15) using a guessed key and known X10. We have

tested the latency of a bitwise XOR and a lookup-table on a typical PC. The
experimental results indicate that the latency of a bitwise XOR is nearly equal to
that of a lookup-table. For simplicity, we regard a lookup-table as a bitwise XOR.
Thus, the cost of the above partial decryption can be converted to 28 bitwise XORs.
Additionally, an XOR sum computation requires 214 − 1 bitwise XORs. Therefore,
the total cost of a 9-round...

BAKSHEESH contains 128× 10 bitwise XORs and 32× 9 lookup-table operations,
which can be integrated into 1568 bitwise XORs. Now, let us compute the 9-round
time complexity that is composed of the following parts:

(a) To filter guessed values by integral distinguisher, we need to prepare 214×3×X10.

(b) To filter Cs for each s ∈ {0, . . . , 7} 3 times to get 24 candidates, we need
214 × (216 + 212 + 28) ≈ 230.093 partial decryptions and 216 + 212 + 28 ≈ 216.093

XOR sum computations at 4 bits, which can be transformed to [230.093 × 28 +
216.093 × (214 − 1)× 4]/1568 ≈ 224.478.

(c) To determine the remaining 32-bit information, we need an additional 232

9-round encryptions.

Summing up all the parts, the time complexity to recover 128 key bits is

214 × 3 + 224.478 × 8 + 232 ≈ 232.009.

Apparently, the time complexity is mainly caused by filtering the remaining 232

candidates. Both the time and data complexity of this 9-round attack are practical.
Actually, on the platform with an i7-8700 CPU @ 3.20GHz and 24 GB RAM, it takes
at most 62 minutes to recover all the key bits using a single thread.

In addition to the 9-round practical attack described above, we also have:

• A 10-round key recovery attack.

• A 13-round theoretical key recovery attack.

16 Baksheesh

5 Automated Cryptanalysis

5.1 Constraints for S-Box to be Active

To ensure the S-Box is active while any of the input bits is active:

x00 − a00 ≤ 0,

x01 − a00 ≤ 0,

x02 − a00 ≤ 0,

x03 − a00 ≤ 0.

If the S-Box aij is active, any one of the input bits xij must be active:

x00 + x01 + x02 + x03 − a00 ≥ 0.

Finally, an input difference must result in an output difference:

4x10 + 4x11 + 4x12 + 4x13 − x00 − x01 − x02 − x03 ≥ 0,

4x00 + 4x01 + 4x02 + 4x03 − x10 − x11 − x12 − x13 ≥ 0.

5.2 How to Integrate S-Box into Linear Constraints?

We need the equations in Algebraic Normal Form (ANF) for the S-Box:

y0 = x0x2 ⊕ x0 ⊕ x1 ⊕ x3 ⊕ 1,

y1 = x0 ⊕ x1x2 ⊕ x3 ⊕ 1,

y2 = x0x2 ⊕ x1x2 ⊕ x1 ⊕ x3,

y3 = x0x1 ⊕ x0x2 ⊕ x2 ⊕ x3.

Example: Constraints for y1

To compute y1 = x0 ⊕ x1x2 ⊕ x3 ⊕ 1, we need constraints for AND and XOR
operations.

1. Constraints for AND Operation For z = x01x02:

x01 + x02 − 1 ≤ z,

x01 ≥ z,

x02 ≥ z.

2. Constraints for XOR Operation For z1 = z ⊕ x00:

z − x00 ≤ z1,

x00 − z ≤ z1,

x00 + z ≥ z1,

2− x00 − z ≥ z1.

Mohit Thakre, Nishchay Rajput and Prajapati Harsh Pareshkumar 17

For z2 = z1 ⊕ x03:
z1 − x03 ≤ z2,

x03 − z1 ≤ z2,

x03 + z1 ≥ z2,

2− x03 − z1 ≥ z2.

Finally, for z3 = z2 ⊕ 1:
2− 1− z2 ≥ z3,

z2 − 1 ≤ z3,

1 + z2 ≥ z3,

2− 1− z2 ≥ z3.

Thus, y1 = z3 = x01x02 ⊕ x00 ⊕ x03 ⊕ 1.

Big Endian and Little Endian
Endianness refers to the order in which bytes of a multi-byte data type (like integers or
floating-point numbers) are stored in the memory. The two types of Endians are:

• Big Endian: The most significant byte (MSB) is stored at the lowest memory
address.

• Little Endian: The least significant byte (LSB) is stored at the lowest memory
address.

Explaining with the help of an example :
Consider a 32-bit integer value:

0x12345678

Big Endian Representation

In a big-endian system, the bytes are stored in memory as follows:

Memory Address Value
0x00 12
0x01 34
0x02 56
0x03 78

Little Endian Representation

In a little-endian system, the bytes are stored in memory as follows:

Memory Address Value
0x00 78
0x01 56
0x02 34
0x03 12

18 Baksheesh

C Code for the Demonstration Purpose :
Here is a simple C program to demonstrate endianness:

Listing 1: C Code to Demonstrate Endianness
#include <s td i o . h>

int main () {
unsigned int num = 0x12345678 ; // Example number
unsigned char ∗ptr = (unsigned char∗)#

p r i n t f ("Memory␣ r ep r e s en t a t i on : \ n ") ;
for (int i = 0 ; i < s izeof (num) ; i++) {

p r i n t f (" Address ␣%p : ␣0x%x\n" , ptr + i , ∗(ptr + i)) ;
}

return 0 ;
}

Output
• On a Little Endian system:

Address 0x100: 0x78
Address 0x101: 0x56
Address 0x102: 0x34
Address 0x103: 0x12

• On a Big Endian system:

Address 0x100: 0x12
Address 0x101: 0x34
Address 0x102: 0x56
Address 0x103: 0x78

6 Github
Link

References

1. https://eprint.iacr.org/2023/750.pdf

2. https://eprint.iacr.org/2024/1926.pdf

https://github.com/harsh2215/Baksheesh
https://eprint.iacr.org/2023/750.pdf
https://eprint.iacr.org/2024/1926.pdf

	Introduction
	Construction
	SubCells (S-Box)
	PermBits (Bit Permutations as Linear Layer)
	AddConstants (Round Constants XOR Layer)
	Key Schedule Routine and AddRoundKey Layer

	Differential and Linear Analysis
	DDT analysis
	Differential Branch Number/weight
	Linear Approximation Table
	Comparative Analysis
	Practical Implication

	Cryptanalysis
	Differential Cryptanalysis
	A 19-round Differential Key-recovery Attack
	Integral Cryptanalysis on Round-reduced BAKSHEESH
	Attacks for Key-recovery

	Automated Cryptanalysis
	Constraints for S-Box to be Active
	How to Integrate S-Box into Linear Constraints?

	Github

